

AFRL

High Power All-Fiber Lasers at AFRL

AFRL/UNM Directed Energy Day

April 26, 2024

<u>Angel Flores¹</u>, Brian M. Anderson, Roger Holten, Ken Macdonald, Ken

Rowland, Abraham Taliaferro, Nader Naderi

AFRL Directed Energy Directorate, Kirtland AFB, NM

Fiber Lasers for Beam Combining

Fibers: promising laser sources for Directed Energy (DE) applications

- Power scaling of single fibers limited by nonlinear (NL) and thermal effects
 - Beam Combining Required for Further Power Scaling
- HP Industrial Fiber Lasers: broad bandwidth (~5-10nm) -> not beam combinable; or multi-mode fibers (reduced intensity) -> poor beam quality (BQ)/brightness
- Beam combinable fibers: req. narrow linewidth & single-mode BQ

Fiber Laser Advantages:

- Compactness ~3.5 kg/kW
- High efficiency: 90% O-O, 45% E-O
- All fiber configuration; Graceful degradation

Fiber Challenges:

- NL: Stimulated Brillouin and Raman scattering (SBS, SRS); Kerr nonlinearity- self phase modulation
- Thermal: Heating and modal interference; modal instability (MI)

THE AIR FORCE RESEARCH LABORATORY -

Prevalent Beam Combining (BC) Architectures

Thermal Mode Instability (TMI)

Interplay of modal interference and heating leading to degradation of beam quality

MI suppression techniques

Mitigation Strategies	Potential Limitations
Gain tailoring	Longer length: lower SBS threshold
Higher seed power	Add'tl preamp stage; HP isolator; complexity
Counter-pumping; Bi- Directional	Power handling capability of combiners (rapidly maturing)
Tandem pumping	SWaP
Shorter seed wavelength	ASE, photodarkening
Smaller core size	Lower SBS threshold

- Thermal effect limiting diffraction limited output at high average powers
 - Thermal grating scatters the fundamental mode into a higher order mode, reducing beam quality
 - Inversely proportional to the core diameter: Critical for other nonlinear effects
 - Smaller core sizes increase higher order loss in fiber

Trade space between TMI and nonlinear effects must be optimized to produce narrow linewidth fiber amplifiers

THE AIR FORCE RESEARCH LABORATORY

Nonlinear Effects: Stimulated Brillouin Scattering

- 1st Nonlinear effect encountered in narrow-linewidth, combinable fiber amplifiers
- Creates a backwards propagating wave at a lower frequency (~16 GHz @ 1 μm)
 - Characterized by a nonlinear increase in the backwards propagating signal
 - SBS thres. prop. to mode area (Ae) and inv. prop. to eff. fiber length (Le)
- Large Mode Area (LMA) fibers and RF phase modulation prevalent approaches for SBS suppression

5

SBC/CBC Compatible Fiber Amplifiers

SBC: Increased bandwidth reduces beam quality; angular dispersion of gratings

CBC: Increased bandwidth creates strict path length matching requirements; reduced coherence length

- CBC: Potn'l atm. turbulence compensation thru tiled array; broader linewidths feasible; N² intensity scaling
 - Reqs phase, polarization, and path length control; increased complexity
- SBC: incoherent combining; minimal ctrl loops; reduced system complexity
 - SBC challenging narrow linewidths (<12GHz) req. due to grating dispersion (reduced BQ)
- Good BQ ($M^2 \le 1.2$) and narrow linewidths <12 GHz (0.04nm) req for compatibility w/ all BC systems

AFRL Goal: Develop high power fiber laser sources suitable for incorporating into both SBC & CBC architectures

AFRL 1µm Fiber Amplifier Research

- Initial high power fiber amp research focused on Ytterbium (Yb)-doped fibers operating at ~1µm
 - Semiconductor diodes commercially available at peak Yb absorption (976 nm); pump diode wavelength near 1µm signal wavelengths-low quantum defect
 - Favorable Yb doping properties in silica & low quant. defect lead to high optical effic. (~80-90%)
- Beam combinable, Yb-doped fiber amps prev. limited to kW class power levels (nonlinear/thermal effects)
- AFRL/RD, AFOSR, DE-JTO co-investments led to key breakthroughs for 1µm fiber amps
- 2012 (AFOSR PO: Dr. Nachman): AFRL dev. time-dependent nonlinear (SBS) model for fiber amps; enabled investigation of var. phase modulation schemes for optimal nonlinear mitigation; [Zeringue, Dajani, et al Opt. Exp 20 (2012)]
- 2014 (AFOSR POs: Dr. Schlossberg, Dr. Luginsland): 1.2kW Fiber Amp (3 GHz~0.01nm linewidth); record narrow linewidth (3-5x linewidth reduction); [Flores, Robin, et al Opt Exp 22 (2014)]
- 2016-2017 (AFOSR PO: Dr. Luginsland): 1) Dev. novel phase mod. technique for enhanced nonlinear supp.; 2) 1st Multi-kW Beam Combining of Phase Mod. Fiber Amps; [Flores, Dajani, et al Opt Eng 55 (2016) & Anderson, Flores, et al Opt Exp 25 (2017)]

Approved for public release; distribution is unlimited. Public Affairs release approval #_AFRL-2022-0079

AFOSR, RD, & JTO Investments led to Demonstration of 1st Multi-kW, Beam Combinable Fiber Amplifiers Major Breakthrough For Next Gen High Power Fiber Laser Systems

Multi-kW Coherent Beam Combining

Multi-kW class CBC

- Validate beam combinability of PRBS modulated fibers
- 5 commercial Nufern amplifiers
- Filled aperture beam combining: 1x5 Diffractive Optical Element (DOE)

AFRL DOE (1 x 5) Beam Combining Setup

5kW Coherent Beam Combining

- Phase modulation via PRBS (n = 7 pattern) at clock rate of 10 GHz
- Phase locking via AFRL patented LOCSET, used extensively worldwide for coherent combining
- Total Combined Output Power: ~5 kW; Combining Efficiency: 82%
- Diffraction Limited Beam Quality: M² = 1.06

THE AIR FORCE

Fiber laser nonlinear suppression schemes can be efficiently combined in multi-kW regime

Conclusions

- Narrow linewidth fiber amplifiers are required for efficient beam combination
- AFRL developing fiber amplifiers compatible with prevalent SBC and CBC architectures
- AFRL demonstrated 1st beam combinable, multi-kW fiber amplifiers
- Demonstrated Multi-kW Class Coherent Beam Combining
 - Combined Output Power: 5 kW; Efficiency: 82%; Beam Quality: M2 = 1.06

Scaling output power of narrow linewidth (beam combinable) fiber amplifiers for DE applications

AFRL

The authors would like to thank AFRL/RD, the Air Force Office of Scientific Research (AFOSR) and the DE Joint Technology Office (DE-JTO) for funding this research.

THE AIR FORCE RESEARCH LABORATORY

Approved for public release; distribution is unlimited. Public Affairs release approval #_AFRL-2022-0079

BACKUP

THE AIR FORCE RESEARCH LABORATORY

Approved for public release; distribution is unlimited. Public Affairs release approval #_AFRL-2022-0079

SBS Suppression: Phase Modulation

L = 2 m

30

25

20

10

THE AIR FORCE RESEARCH LABORATORY

15

Normalized Linewidth

- Power Scaling: 2 Approaches Increase Fiber Channels or Increase Power Per Fiber Channel
- Phase Modulation: RF driving signal utilized to modulate optical signal; broaden spectral linewidth

WNS: enhancement factor approaches theory

Novel time-dependent nonlinear model enabled investigation of various modulation schemes for optimal SBS suppression

Key Technological Advances

Pump guided in multi-mode cladding waveguide

Seed guided in core

• Single-clad, single-mode fiber requires singlemode pump

Laser Diode Bars

P_{max} limited by Brightness requirements

Prior lasers, used flash lamps (poor eff. & lifetime) Efficient pump coupling to double-clad fiber requires brightness conservation

 $D_{fiber} \cdot NA_{fiber} \geq D_{pump} \cdot NA_{pump}$

Fiber amplifier is a brightness converter:

Multi-mode pump \rightarrow Single-mode signal

14

Kerr nonlinearity:

- Kerr nonlinearity limits beam combinability at high powers
 - Amplitude noise from GVD, combines w/ Kerr nonlinear to produce SPM broadening
 - \rightarrow Drop in beam combining efficiency, reduced coherence length
 - kW-class fiber amplifier: ~4 rad/kW, higher power amplifiers: 11 rad/kW
- Mitigation: Use narrower linewidths to reduce amplitude noise